Fused sparsity and robust estimation for linear models with unknown variance
نویسندگان
چکیده
In this paper, we develop a novel approach to the problem of learning sparse representations in the context of fused sparsity and unknown noise level. We propose an algorithm, termed Scaled Fused Dantzig Selector (SFDS), that accomplishes the aforementioned learning task by means of a second-order cone program. A special emphasize is put on the particular instance of fused sparsity corresponding to the learning in presence of outliers. We establish finite sample risk bounds and carry out an experimental evaluation on both synthetic and real data.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملEstimation of portfolio efficient frontier by different measures of risk via DEA
In this paper, linear Data Envelopment Analysis models are used to estimate Markowitz efficient frontier. Conventional DEA models assume non-negative values for inputs and outputs. however, variance is the only variable in these models that takes non-negative values. Therefore, negative data models which the risk of the assets had been used as an input and expected return was the output are uti...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملRobust Filtering for State and Fault Estimation of Linear Stochastic Systems with Unknown Disturbance
This paper presents a new robust filter structure to solve the simultaneous state and fault estimation problem of linear stochastic discrete-time systems with unknown disturbance. The method is based on the assumption that the fault and the unknown disturbance affect both the system state and the output, and no prior knowledge about their dynamical evolution is available. By making use of an op...
متن کامل